

Generalizing a Data Analysis Pipeline in the Cloud to Handle Diverse Use Cases in NASA's EOSDIS

Christopher Lynnes*, NASA/Goddard Space Flight Center Rahul Ramachandran*, NASA/Marshall Space Flight Center

NASA's Earth Science Data Systems Program

- Actively manages NASA's
 Earth science data as a
 national asset: satellite,
 airborne, and in situ
- Develops capabilities to support rigorous science research
- Processes instrument data to create high quality long-term Earth science data records.

Land Surface Temperature on a base of Corrected Reflectance from Aqua Moderate Resolution Imaging Spectroradiometer, 16 Jun 2018

Earth Observing System Data and Information System

Projected Data Volumes

Distribution increases similarly to cumulative volume

Solution: Data-proximal Analysis

Abstract Analytics Workflow

Extract-and-Transform Preprocessing

Analysis-Ready Data for End Users

Cloud-Native Analysis for Data Scientists

Analysis-as-a-Service for Interdisciplinary Users

Interactive Data Exploration (for everybody)

Service offering enables access throughout the value chain

Service consumption opens pipeline to external data

Service consumption opens pipeline to external data

NASA Earth Science Cloud Analytics Workshop

February 2018, Annapolis, Maryland

- ~ 40 participants:
 - Earth scientists
 - Policymakers
 - System architects
 - Data scientists

Report: https://ntrs.nasa.gov/search.jsp?R=20180002954

Workshop Recommendations

- 1. Align Strategies of Cloud Analytic Efforts
- 2. Develop Reference Architecture for Cloud Analytics
- 3. Develop Analytics-Optimized Data Stores
- 4. Enable Reuse of Cloud Analytics-Related Services
- 5. Foster Wider Machine Learning Adoption...
- 6. Foster Cloud Adoption

Key Questions

Q: What service specifications should components use?

- 1. High-level: Open Geospatial Consortium family?
 - a. Web Coverage Processing Service
 - b. Web Processing Service
- 2. Low-level: OpenAPI*?

Key Questions

Q: Which data transformations are common enough to include in production of Analysis-Ready Data?

- Subsetting
- 2. Regridding and reprojection
- 3. Quality filtering?

Key Questions

Q: What is the optimal Analytics Optimized Data Store?

- 1. Highly scalable database?
- 2. Hadoop File System?
- 3. Data Cubes in Web Object Storage?
- 4. Xarray / zarr?
- 5. It depends...